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COMMENT

Comment on the letter ‘A new efficient method for
calculating perturbation energies using functions which are
not quadratically integrable’ by L Sk ala and J Cizek

Miloslav Znojil
Ustav jaderg fyziky AV CR, 250 68Rez, Czech Republic

Received 1 April 1996
Abstract. We suggest that the recent numerical-integration perturbative approach to bound

states as proposed by 8 andCizek may be generalized via its renormalizations.

1. Introduction

The phenomenological Sdiinger bound-state problem

>  ee+1
[_d)cz ( 2 ) + V(x)} V(x) = ey (x) ¥ (x0) =0 Xg — 00 (1)
with a regular potentiaV (x) in one or three dimensions (i.e. with parity= —1, 0 or
angular momentu® = 0, 1, ..., respectively) is currently being solved by a shooting

method [1]. Basically, at a finite but sufficiently large > 1, a trial choice of the energy
¢ and of an initialization regular in the origin,

V(x) ~cxttt x~0 c#0 (2)

enables us to integrate equation (1) numerically. eAg ¢®Wsicd  the right-most nodal
zerox, of the resulting numerical (¢, x) does not lie at its correct positiory of course.
Fortunately, due to the well known oscillation rule
glimproved o for x; < xo
3)

glimproved o for x; > xg

one may improve the energy guess iteratively. Recently, a generalization of this scheme to
perturbed systems

Hyr(x) = E¥(x)
H = Ho+ AHy (+A*Hp + -+ )

, @)
E=Ey+AE1+AEx+---
¥ (x) = Yo(x) + A Y1 (x) + 2o (x) + - -
with the exactly solvable/solved zeroth-order problem
(Ho — Ep) Yo(x) =0 Yo(xo) =0 xo>1 )
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has been proposed by &k andCizek (X, [2]). Their method is based on a replacement
of the separate @") Rayleigh—Schidinger (RS) components of equation (4):

(Ho — Eo) ¥u(x) + (H1 — E1) Yn1(x) + -+ + (Hy, — Ey) Yo(x) =0 n=12...

(6)
by the numerically more tractable set of equations
(Ho — Eo) ¢n(e, x) + (Hy — E1) Yrp_1(x) + -+ + (Hyo1 — Eqnc1) Y1(x) + Hyo(x)
= ¢ Yo(x) (7)
with the same initial boundary condition (2) as above, namely
@n(e, x) ~ cxtt x~0 c#0. (8)

Here, at each perturbation order= 1, 2, . . ., the asymptotic boundary condition has been
relaxed,p, (¢, xg) # 0 ande # E,. As a consequence, one may differentiate equations (7)
with respect to the variable:

(Ho — E0)0: ¢, (¢, x) = Yo(x) . 9

From this equation, Ska andCizek inferred that the-dependence o, (s, x) must be
linear andr-independent,

on(e,x) = 0, (0, x) + & F(x) (10)

(cf [2,equation (12)]). Strictly speaking, such a conclusion is invalid: we may always
renormalize

F(x) > F(x) + foyo(x) + & fio(x) + ° foro(x) + -+ - . (11)
This puzzle inspired the discussion that follows.

2. Renormalization

Let us fix the parameter in the initialization (8). Equations (7) then define the regular
solutions ¢ll(¢, x) at any e and n in principle. At a different value of, we get a
‘renormalized’ solution

oAl (e, x) = ¢l (e, x) + d, (e) L) (Eo, x) (12)

(quotation marks indicate that the normalization integrgf8- - might diverge in the
xo — oo limit) and, of coursecg may be bothn- ande-dependent.

2.1. The § quasi-normalization

Once we accept theCSlinearity constraint in its fixed-form (10) simply as a certain
pseudo-inversiomostulate

goL‘?] (6,x) = (p,[f] 0,x) +¢e F(x) n=0,1,... (13)
we may define the factoF (x) directly, by equation (9):
(Ho — Eo) F(x) = yo(x) (14)

with a modified near-the-threshold initialization
F(x) = O(x"*?) x| < 1. (15)
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Thus, our present notation clarifies the puzzle (11) as reflecting the particfhlahtﬁce of
normalization

désé) _ d{SC) _ dz(Sé) —...=0. (16)

As a byproduct, our analysis enables us to simplify tit® &gorithm itself. During the
evaluation of the first-order energy

E1 = —¢1(0, x0)/ F (x0) F(x0) = ¢1(1, x0) — ¢1(0, xo) 17)
defined via the double integration of the= 1 equation (7)
(Ho — Eo) ¢} (e, x) + Hio(x) = & o(x) (18)

ate = 0 and ate = 1 [2], one may replace the latter step by the integration of equations (14)
and (15). This is a slightly simpler task: tt#& perturbation term is absent.

2.2. The standard RS renormalization
The renormalization ambiguity (12), i.e. in the light of (8), the freedom
¢ — cr(e,n) =c x [L+d,(e)] n=0,1,... (19)

is usually suppressed, in the current textbook spirit [3], by the RS requirements of
normalization and orthogonality,

(Yol Yo) =1 (Yol Y1) = (Yol Y2) =---=0. (20)
This determines the particular RS sequencé’sf

X0 -1
A (Eg) = —1+ [ / oK (Eo, 1)[? dz} (21)
0

ek (Bo. Dgl(E, 1) dr
o2 15 (Eo, 1)[2 dt

at the physicat’s. Such an ‘on-the-energy-shell’ constraint still admits a virtually arbitrary
e-dependence. This is not surprising: within the textbook RS framework, we are not
expected to leave the space of quadratically integrable functions.

d,(,RS)(En) — n = 1, 2, ce (22)

3. A ¢ — 0 renormalization

After a return to a broader space of functions, the RS-inspired possibility ofdapendence

of the initial slopesck = cr(n) of the renormalized regular squtioraz#Rl (¢, x) near the
origin opens a broad new area of modifications of the &gorithm. Some of them
may be expected to exhibit a close relationship to various perturbation theories which
use integrations over the coordinates [4]. This will not be analysed here in any greater
detail; let us just mention the simplest, highly degenerate (HD) possibility of letting all the
higher-ordercg’s vanish:

Py =0 n=12.... (23)

Of course, we must keep the first, unperturlagd0) non—zero,céeHD)(O) # 0; otherwise,
there would not be any non-zeify at all. For convenience, we may preserve the above
RS or £ n = 0 normalization convention unchanged.
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Technically, the renormalized HD algorithm remains straightforward. We only have to
replace the numerical initialization condition (8) by its modification which is similar to (15):

@lOIHD) (¢ ) = O(x*1?) x| < 1 n=12.... (24)

It may prove useful, e.g., within the so-called Hill-determinant method [5] and its various
perturbative modifications [6]. In this context, th€-d8ke linearity assumption

@lOIHD) (¢ ) = QMDY (O x) 4 ¢ F(x) n=0,1,... (25)

acquires a less sophisticated interpretation as a certain close parallel of the standard RS
model-space-projection recipe for a decomposition of a wavefunction in a certain non-
orthogonalized expansion basis, wifiix) and 21D (0, x) playing the role of its internal

and external components, respectively [6, 7].
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