Comment on the letter `A new efficient method for calculating perturbation energies using functions which are not quadratically integrable' by L Skála and J Cízek

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 295253
(http://iopscience.iop.org/0305-4470/29/16/039)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:59

Please note that terms and conditions apply.

COMMENT

Comment on the letter 'A new efficient method for calculating perturbation energies using functions which are not quadratically integrable’ by L Skála and J Čížek

Miloslav Znojil
Ústav jaderné fyziky AV ČR, 25068 Řež, Czech Republic

Received 1 April 1996

Abstract

We suggest that the recent numerical-integration perturbative approach to bound states as proposed by Skála and Čížek may be generalized via its renormalizations.

1. Introduction

The phenomenological Schrödinger bound-state problem
$\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{\ell(\ell+1)}{x^{2}}+V(x)\right] \psi(x)=\varepsilon \psi(x) \quad \psi\left(x_{0}\right)=0 \quad x_{0} \rightarrow \infty$
with a regular potential $V(x)$ in one or three dimensions (i.e. with parity $\ell=-1,0$ or angular momentum $\ell=0,1, \ldots$, respectively) is currently being solved by a shooting method [1]. Basically, at a finite but sufficiently large $x_{0} \gg 1$, a trial choice of the energy ε and of an initialization regular in the origin,

$$
\begin{equation*}
\psi(x) \approx c x^{\ell+1} \quad x \approx 0 \quad c \neq 0 \tag{2}
\end{equation*}
$$

enables us to integrate equation (1) numerically. At $\varepsilon \neq \varepsilon^{\text {(physical) }}$, the right-most nodal zero x_{r} of the resulting numerical $\psi(\varepsilon, x)$ does not lie at its correct position x_{0} of course. Fortunately, due to the well known oscillation rule

$$
\begin{array}{ll}
\varepsilon^{(\mathrm{improved})}<\varepsilon & \text { for } x_{\mathrm{r}}<x_{0} \\
\varepsilon^{(\mathrm{improved})}>\varepsilon & \text { for } x_{\mathrm{r}}>x_{0} \tag{3}
\end{array}
$$

one may improve the energy guess iteratively. Recently, a generalization of this scheme to perturbed systems

$$
\begin{align*}
& H \psi(x)=E \psi(x) \\
& H=H_{0}+\lambda H_{1}\left(+\lambda^{2} H_{2}+\cdots\right) \\
& E=E_{0}+\lambda E_{1}+\lambda^{2} E_{2}+\cdots \tag{4}\\
& \psi(x)=\psi_{0}(x)+\lambda \psi_{1}(x)+\lambda^{2} \psi_{2}(x)+\cdots
\end{align*}
$$

with the exactly solvable/solved zeroth-order problem

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \psi_{0}(x)=0 \quad \psi_{0}\left(x_{0}\right)=0 \quad x_{0} \gg 1 \tag{5}
\end{equation*}
$$

has been proposed by Skála and Čížek (SČ, [2]). Their method is based on a replacement of the separate $\mathrm{O}\left(\lambda^{n}\right)$ Rayleigh-Schrödinger (RS) components of equation (4):

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \psi_{n}(x)+\left(H_{1}-E_{1}\right) \psi_{n-1}(x)+\cdots+\left(H_{n}-E_{n}\right) \psi_{0}(x)=0 \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

by the numerically more tractable set of equations

$$
\begin{align*}
& \left(H_{0}-E_{0}\right) \varphi_{n}(\varepsilon, x)+\left(H_{1}-E_{1}\right) \psi_{n-1}(x)+\cdots+\left(H_{n-1}-E_{n-1}\right) \psi_{1}(x)+H_{n} \psi_{0}(x) \\
& \quad=\varepsilon \psi_{0}(x) \tag{7}
\end{align*}
$$

with the same initial boundary condition (2) as above, namely

$$
\begin{equation*}
\varphi_{n}(\varepsilon, x) \approx c x^{\ell+1} \quad x \approx 0 \quad c \neq 0 \tag{8}
\end{equation*}
$$

Here, at each perturbation order $n=1,2, \ldots$, the asymptotic boundary condition has been relaxed, $\varphi_{n}\left(\varepsilon, x_{0}\right) \neq 0$ and $\varepsilon \neq E_{n}$. As a consequence, one may differentiate equations (7) with respect to the variable ε :

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \partial_{\varepsilon} \varphi_{n}(\varepsilon, x)=\psi_{0}(x) \tag{9}
\end{equation*}
$$

From this equation, Skála and Čížek inferred that the ε-dependence of $\varphi_{n}(\varepsilon, x)$ must be linear and n-independent,

$$
\begin{equation*}
\varphi_{n}(\varepsilon, x)=\varphi_{n}(0, x)+\varepsilon F(x) \tag{10}
\end{equation*}
$$

(cf [2, equation (12)]). Strictly speaking, such a conclusion is invalid: we may always renormalize

$$
\begin{equation*}
F(x) \rightarrow F(x)+f_{0} \psi_{0}(x)+\varepsilon f_{1} \psi_{0}(x)+\varepsilon^{2} f_{2} \psi_{0}(x)+\cdots \tag{11}
\end{equation*}
$$

This puzzle inspired the discussion that follows.

2. Renormalization

Let us fix the parameter c in the initialization (8). Equations (7) then define the regular solutions $\varphi_{n}^{[c]}(\varepsilon, x)$ at any ε and n in principle. At a different value of c, we get a 'renormalized' solution

$$
\begin{equation*}
\varphi_{n}^{\left[c_{\mathrm{R}}\right]}(\varepsilon, x)=\varphi_{n}^{[c]}(\varepsilon, x)+d_{n}(\varepsilon) \varphi_{0}^{[c]}\left(E_{0}, x\right) \tag{12}
\end{equation*}
$$

(quotation marks indicate that the normalization integrals $\int_{0}^{x_{0}} \cdots$ might diverge in the $x_{0} \rightarrow \infty$ limit) and, of course, c_{R} may be both n - and ε-dependent.

2.1. The SČ quasi-normalization

Once we accept the SČ linearity constraint in its fixed-c form (10) simply as a certain pseudo-inversion postulate

$$
\begin{equation*}
\varphi_{n}^{[c]}(\varepsilon, x)=\varphi_{n}^{[c]}(0, x)+\varepsilon F(x) \quad n=0,1, \ldots \tag{13}
\end{equation*}
$$

we may define the factor $F(x)$ directly, by equation (9):

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) F(x)=\psi_{0}(x) \tag{14}
\end{equation*}
$$

with a modified near-the-threshold initialization

$$
\begin{equation*}
F(x)=\mathrm{O}\left(x^{\ell+2}\right) \quad|x| \ll 1 \tag{15}
\end{equation*}
$$

Thus, our present notation clarifies the puzzle (11) as reflecting the particular SČ choice of normalization

$$
\begin{equation*}
d_{0}^{(\mathrm{SČ})}=d_{1}^{(\mathrm{SČ})}=d_{2}^{(\mathrm{SČ})}=\cdots=0 \tag{16}
\end{equation*}
$$

As a byproduct, our analysis enables us to simplify the SČ algorithm itself. During the evaluation of the first-order energy

$$
\begin{equation*}
E_{1}=-\varphi_{1}\left(0, x_{0}\right) / F\left(x_{0}\right) \quad F\left(x_{0}\right)=\varphi_{1}\left(1, x_{0}\right)-\varphi_{1}\left(0, x_{0}\right) \tag{17}
\end{equation*}
$$

defined via the double integration of the $n=1$ equation (7)

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \varphi_{1}^{[c]}(\varepsilon, x)+H_{1} \psi_{0}(x)=\varepsilon \psi_{0}(x) \tag{18}
\end{equation*}
$$

at $\varepsilon=0$ and at $\varepsilon=1$ [2], one may replace the latter step by the integration of equations (14) and (15). This is a slightly simpler task: the H_{1} perturbation term is absent.

2.2. The standard $R S$ renormalization

The renormalization ambiguity (12), i.e. in the light of (8), the freedom

$$
\begin{equation*}
c \rightarrow c_{\mathrm{R}}(\varepsilon, n)=c \times\left[1+d_{n}(\varepsilon)\right] \quad n=0,1, \ldots \tag{19}
\end{equation*}
$$

is usually suppressed, in the current textbook spirit [3], by the RS requirements of normalization and orthogonality,

$$
\begin{equation*}
\left\langle\psi_{0} \mid \psi_{0}\right\rangle=1 \quad\left\langle\psi_{0} \mid \psi_{1}\right\rangle=\left\langle\psi_{0} \mid \psi_{2}\right\rangle=\cdots=0 \tag{20}
\end{equation*}
$$

This determines the particular RS sequence of d 's:

$$
\begin{align*}
& d_{0}^{(R S)}\left(E_{0}\right)=-1+\left[\int_{0}^{x_{0}}\left|\varphi_{0}^{[c]}\left(E_{0}, t\right)\right|^{2} \mathrm{~d} t\right]^{-1} \tag{21}\\
& d_{n}^{(R S)}\left(E_{n}\right)=-\frac{\int_{0}^{x_{0}} \varphi_{0}^{[c] *}\left(E_{0}, \tau\right) \varphi_{n}^{[c]}\left(E_{n}, \tau\right) \mathrm{d} \tau}{\int_{0}^{x_{0}}\left|\varphi_{0}^{[c]}\left(E_{0}, t\right)\right|^{2} \mathrm{~d} t} \quad n=1,2, \ldots \tag{22}
\end{align*}
$$

at the physical ε 's. Such an 'on-the-energy-shell' constraint still admits a virtually arbitrary ε-dependence. This is not surprising: within the textbook RS framework, we are not expected to leave the space of quadratically integrable functions.

3. A $\boldsymbol{c} \rightarrow \mathbf{0}$ renormalization

After a return to a broader space of functions, the RS-inspired possibility of an n-dependence of the initial slopes $c_{\mathrm{R}}=c_{\mathrm{R}}(n)$ of the renormalized regular solutions $\varphi_{n}^{\left[c_{\mathrm{R}}\right]}(\varepsilon, x)$ near the origin opens a broad new area of modifications of the SČ algorithm. Some of them may be expected to exhibit a close relationship to various perturbation theories which use integrations over the coordinates [4]. This will not be analysed here in any greater detail; let us just mention the simplest, highly degenerate (HD) possibility of letting all the higher-order c_{R} 's vanish:

$$
\begin{equation*}
c_{\mathrm{R}}^{(\mathrm{HD})}(n)=0 \quad n=1,2, \ldots \tag{23}
\end{equation*}
$$

Of course, we must keep the first, unperturbed $c_{\mathrm{R}}(0)$ non-zero, $c_{\mathrm{R}}^{(\mathrm{HD})}(0) \neq 0$; otherwise, there would not be any non-zero ψ_{0} at all. For convenience, we may preserve the above RS or S Č $n=0$ normalization convention unchanged.

Technically, the renormalized HD algorithm remains straightforward. We only have to replace the numerical initialization condition (8) by its modification which is similar to (15):

$$
\begin{equation*}
\varphi_{n}^{[0](\mathrm{HD})}(\varepsilon, x)=\mathrm{O}\left(x^{\ell+2}\right) \quad|x| \ll 1 \quad n=1,2, \ldots . \tag{24}
\end{equation*}
$$

It may prove useful, e.g., within the so-called Hill-determinant method [5] and its various perturbative modifications [6]. In this context, the SČ-like linearity assumption

$$
\begin{equation*}
\varphi_{n}^{[0](\mathrm{HD})}(\varepsilon, x)=\varphi_{n}^{[0](\mathrm{HD})}(0, x)+\varepsilon F(x) \quad n=0,1, \ldots \tag{25}
\end{equation*}
$$

acquires a less sophisticated interpretation as a certain close parallel of the standard RS model-space-projection recipe for a decomposition of a wavefunction in a certain nonorthogonalized expansion basis, with $F(x)$ and $\varphi_{n}^{[0](\mathrm{HD})}(0, x)$ playing the role of its internal and external components, respectively [6, 7].

References

[1] Killingbeck J P and Jolicard G 1993 Phys. Lett. 172A 313
Fack V 1992 Med. Konink. Acad. Wetensch. België 54153
[2] Skála L and Čížek J 1996 J. Phys. A: Math. Gen. 29 L129
[3] Messiah A 1961 Quantum Mechanics (Amsterdam: North Holland)
[4] Sternheimer R 1951 Phys. Rev. 84244 Price P H 1954 Proc. Phys. Soc. 67383 Dalgarno A and Lewis J T 1955 Proc. R. Soc. 23370 Dalgarno A and Stewart A L 1969 Proc. R. Soc. 238269 Aharonov Y and Au C K 1979 Phys. Rev. Lett. 421582 Turbiner A V and Ushveridze A G 1988 J. Math. Phys. 292053 Fernández F M and Cástro E A 1993 J. Math. Phys. 343670 Barut A O, Beker H and Rador T 1994 Phys. Lett. 194A 1
[5] Biswas S N, Datta K, Saxena R P, Srivastava P K and Varma V S 1971 Phys. Rev. D 4 3617; 1973 J. Math. Phys. 141190
[6] Znojil M 1990 Phys. Lett. 150A 67; Czech. J. Phys. 401065
[7] Znojil M 1991 Czech. J. Phys. 41 397; 497; 1996 Phys. Lett. A, submitted

