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COMMENT

Comment on the letter ‘A new efficient method for
calculating perturbation energies using functions which are
not quadratically integrable’ by L Sk ála and J Čı́žek

Miloslav Znojil
Ústav jaderńe fyziky AV ČR, 250 68Řěz, Czech Republic

Received 1 April 1996

Abstract. We suggest that the recent numerical-integration perturbative approach to bound
states as proposed by Skála andČı́žek may be generalized via its renormalizations.

1. Introduction

The phenomenological Schrödinger bound-state problem[
− d2

dx2
+ `(`+ 1)

x2
+ V (x)

]
ψ(x) = εψ(x) ψ(x0) = 0 x0 → ∞ (1)

with a regular potentialV (x) in one or three dimensions (i.e. with paritỳ= −1, 0 or
angular momentum̀ = 0, 1, . . ., respectively) is currently being solved by a shooting
method [1]. Basically, at a finite but sufficiently largex0 � 1, a trial choice of the energy
ε and of an initialization regular in the origin,

ψ(x) ≈ c x`+1 x ≈ 0 c 6= 0 (2)

enables us to integrate equation (1) numerically. Atε 6= ε(physical), the right-most nodal
zeroxr of the resulting numericalψ(ε, x) does not lie at its correct positionx0 of course.
Fortunately, due to the well known oscillation rule

ε(improved) < ε for xr < x0

ε(improved) > ε for xr > x0

(3)

one may improve the energy guess iteratively. Recently, a generalization of this scheme to
perturbed systems

Hψ(x) = Eψ(x)

H = H0 + λH1 (+λ2H2 + · · ·)
E = E0 + λE1 + λ2E2 + · · ·
ψ(x) = ψ0(x)+ λ ψ1(x)+ λ2ψ2(x)+ · · ·

(4)

with the exactly solvable/solved zeroth-order problem

(H0 − E0) ψ0(x) = 0 ψ0(x0) = 0 x0 � 1 (5)
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has been proposed by Skála andČı́žek (ŠC, [2]). Their method is based on a replacement
of the separate O(λn) Rayleigh–Schr̈odinger (RS) components of equation (4):

(H0 − E0) ψn(x)+ (H1 − E1) ψn−1(x)+ · · · + (Hn − En) ψ0(x) = 0 n = 1, 2, . . .

(6)

by the numerically more tractable set of equations

(H0 − E0) ϕn(ε, x)+ (H1 − E1) ψn−1(x)+ · · · + (Hn−1 − En−1) ψ1(x)+Hnψ0(x)

= ε ψ0(x) (7)

with the same initial boundary condition (2) as above, namely

ϕn(ε, x) ≈ c x`+1 x ≈ 0 c 6= 0 . (8)

Here, at each perturbation ordern = 1, 2, . . ., the asymptotic boundary condition has been
relaxed,ϕn(ε, x0) 6= 0 andε 6= En. As a consequence, one may differentiate equations (7)
with respect to the variableε:

(H0 − E0)∂εϕn(ε, x) = ψ0(x) . (9)

From this equation, Sḱala andČı́žek inferred that theε-dependence ofϕn(ε, x) must be
linear andn-independent,

ϕn(ε, x) = ϕn(0, x)+ ε F (x) (10)

(cf [2, equation (12)]). Strictly speaking, such a conclusion is invalid: we may always
renormalize

F(x) → F(x)+ f0ψ0(x)+ ε f1ψ0(x)+ ε2f2ψ0(x)+ · · · . (11)

This puzzle inspired the discussion that follows.

2. Renormalization

Let us fix the parameterc in the initialization (8). Equations (7) then define the regular
solutions ϕ[c]

n (ε, x) at any ε and n in principle. At a different value ofc, we get a
‘renormalized’ solution

ϕ[cR]
n (ε, x) = ϕ[c]

n (ε, x)+ dn(ε) ϕ
[c]
0 (E0, x) (12)

(quotation marks indicate that the normalization integrals
∫ x0

0 · · · might diverge in the
x0 → ∞ limit) and, of course,cR may be bothn- andε-dependent.

2.1. The ŠC quasi-normalization

Once we accept the ŠC linearity constraint in its fixed-c form (10) simply as a certain
pseudo-inversionpostulate

ϕ[c]
n (ε, x) = ϕ[c]

n (0, x)+ ε F (x) n = 0, 1, . . . (13)

we may define the factorF(x) directly, by equation (9):

(H0 − E0) F (x) = ψ0(x) (14)

with a modified near-the-threshold initialization

F(x) = O(x`+2) |x| � 1 . (15)
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Thus, our present notation clarifies the puzzle (11) as reflecting the particular SČ choice of
normalization

d
(SČ)
0 = d

(SČ)
1 = d

(SČ)
2 = · · · = 0 . (16)

As a byproduct, our analysis enables us to simplify the SČ algorithm itself. During the
evaluation of the first-order energy

E1 = −ϕ1(0, x0)/F (x0) F (x0) = ϕ1(1, x0)− ϕ1(0, x0) (17)

defined via the double integration of then = 1 equation (7)

(H0 − E0) ϕ
[c]
1 (ε, x)+H1ψ0(x) = ε ψ0(x) (18)

at ε = 0 and atε = 1 [2], one may replace the latter step by the integration of equations (14)
and (15). This is a slightly simpler task: theH1 perturbation term is absent.

2.2. The standard RS renormalization

The renormalization ambiguity (12), i.e. in the light of (8), the freedom

c → cR(ε, n) = c × [1 + dn(ε)] n = 0, 1, . . . (19)

is usually suppressed, in the current textbook spirit [3], by the RS requirements of
normalization and orthogonality,

〈ψ0| ψ0〉 = 1 〈ψ0| ψ1〉 = 〈ψ0| ψ2〉 = · · · = 0. (20)

This determines the particular RS sequence ofd ’s:

d
(RS)

0 (E0) = −1 +
[∫ x0

0
|ϕ[c]

0 (E0, t)|2 dt

]−1

(21)

d(RS)n (En) = −
∫ x0

0 ϕ
[c]∗
0 (E0, τ )ϕ

[c]
n (En, τ ) dτ∫ x0

0 |ϕ[c]
0 (E0, t)|2 dt

n = 1, 2, . . . (22)

at the physicalε’s. Such an ‘on-the-energy-shell’ constraint still admits a virtually arbitrary
ε-dependence. This is not surprising: within the textbook RS framework, we are not
expected to leave the space of quadratically integrable functions.

3. A c → 0 renormalization

After a return to a broader space of functions, the RS-inspired possibility of ann-dependence
of the initial slopescR = cR(n) of the renormalized regular solutionsϕ[cR]

n (ε, x) near the
origin opens a broad new area of modifications of the SČ algorithm. Some of them
may be expected to exhibit a close relationship to various perturbation theories which
use integrations over the coordinates [4]. This will not be analysed here in any greater
detail; let us just mention the simplest, highly degenerate (HD) possibility of letting all the
higher-ordercR’s vanish:

c
(HD)
R (n) = 0 n = 1, 2, . . . . (23)

Of course, we must keep the first, unperturbedcR(0) non-zero,c(HD)
R (0) 6= 0; otherwise,

there would not be any non-zeroψ0 at all. For convenience, we may preserve the above
RS or ŠC n = 0 normalization convention unchanged.
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Technically, the renormalized HD algorithm remains straightforward. We only have to
replace the numerical initialization condition (8) by its modification which is similar to (15):

ϕ[0](HD)
n (ε, x) = O(x`+2) |x| � 1 n = 1, 2, . . . . (24)

It may prove useful, e.g., within the so-called Hill-determinant method [5] and its various
perturbative modifications [6]. In this context, the SČ-like linearity assumption

ϕ[0](HD)
n (ε, x) = ϕ[0](HD)

n (0, x)+ ε F (x) n = 0, 1, . . . (25)

acquires a less sophisticated interpretation as a certain close parallel of the standard RS
model-space-projection recipe for a decomposition of a wavefunction in a certain non-
orthogonalized expansion basis, withF(x) andϕ[0](HD)

n (0, x) playing the role of its internal
and external components, respectively [6, 7].
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